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The impact of patent citations
on patent duration

[Abstract] What is the impact of patent citations on patent renewal behaviour?
Patent citations are commonly used as an indicator of technology spillovers. For cited
patents therefore, patent citations have a potentially ambiguous impact. On the one
hand, patent citations may indicate a scientific breakthrough, a high value of the cited
patent and therefore a long survival period. On the other hand, patent citations may
indicate competing innovations that render the cited patent obsolete. By
discriminating patents by technology field, it is demonstrated that patents that receive
citations across technology fields survive longer than other patents. Patents that
receive citations within the same technology field lapse earlier.

JEL Classification Numbers: 030, 034, C41
Keywords: Technology spillovers, Patent data, Patent Renewal Data, Patent
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1. Introduction

It is widely accepted that spillover effects associated with knowledge production

reduce the (private) incentives to invest in research and development, R&D.1 The

patent institution is the political answer to knowledge spillovers (in addition to R&D

subsidies of various kinds). Patents exist in order to protect the property rights to

innovations. Despite their apparent importance, little is known about the influence of

technology spillovers on the value of innovations. It is recognised that the size

distribution of private returns from technological innovation is skewed to the right

(Scherer, 1998). While most innovations are of marginal economic value, some are

extremely valuable. The same applies to the complete social value of innovations

defined as the private value plus the value of pecuniary and purely external effects.

According to recent literature on general-purpose technology (see e.g. Helpman,

1998) most innovations build on and refine existing technology. Yet, some

innovations are path-breaking and open windows of opportunities for subsequent

incremental innovations. Therefore, the private and social values of an innovation are

likely to vary with the degree to which it relates to preceding innovations and the

degree to which it stimulates subsequent innovations.

Empirical studies of the value of innovations have been based on a variety of

approaches. For studies of the private value of innovations, indirect measures, like

estimating firms’ market value or profits as functions of innovations have been most

frequent (see e.g. Griliches et al., 1987 and Hall, 1993). These studies are based on

econometric estimation using firm level data and either patents or research and

development (R&D) as innovation indicator. Another approach is to study firms’

patenting behaviour directly (see Pakes, 1986 and Pakes and Schankerman, 1986). In

order to keep patents in force, holders of patents must pay an annual renewal fee. If

patent-holders renew their patents based on an assessment of the value of the patent

rights, data on patent renewal contain information on the distribution of the value of

patents. This is the approach taken in this paper.

                                               
1 See the textbooks by Barro and Sala-I-Martin (1995) and Aghion and Howitt (1998) for thorough
discussions on the effects of knowledge externalities on economic growth. Benassy (1998) and Cohen
and Levinthal (1989) provide arguments against the common view that incentives to investments in
R&D are necessarily sub-optimal in decentralised market economies.
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Studies of the total social value of innovation are also based on different

methods. One approach is to estimate production functions including external R&D

(i.e. R&D performed by other firms) (see e.g. Jaffe, 1986 or the survey by Griliches,

1992). A more recent approach is to use patent citations as a direct measure of R&D

spillovers. Patent citations are added to patent documents when the intrinsic

knowledge in the cited patent is relevant for the knowledge patented by the citing

patent. In recent empirical work, the influence of patent citations on productivity in

the citing sector (Verspagen, 1997) or on the value of cited patented innovations has

been investigated (Hall et al., 2000).

In this paper, I use patent renewal data to draw inferences on the value of

patents. While the existing literature has shed considerable light on the unconditional

distribution of the value of patents, it has not to the same extent explored the factors

behind the distribution by including explanatory variables in the analyses. This paper

is devoted to the impact of patent citations on patent duration and therefore the value

of patents. It is found that patent citations influence on the survival period of the

cited patent, in the way predicted by theory: In general, patent citations correlate

positively with survival time. Patent citations within technology classes have the

opposite effect. Such citations may therefore indicate rival patents that creatively

erode the value of the cited patent.

The next section provides a brief presentation of the patent institution and the

information contained in patent documents. Also, the existing literature on patent

citations, the value of patents and patent duration data are briefly reviewed.  Section

3 presents a general model of patent renewal. Thereafter the database on patent

renewals used in this paper and the empirical specification used are discussed.

Section 5 provides empirical results. This section presents nonparametric,

semiparametric and parametric results on patent survival and some estimates on the

distribution of the value of patents. Section 6 concludes.

2. Patents, patent duration and patent citations

The patent institution

A patent is a document provided by legal authorities that gives the holder the

exclusive rights to commercial exploitation of the described innovation for a certain

period. The holder of a patent is therefore entitled to deny others to produce, trade or

in other ways commercially exploit the innovation without explicit permission from
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the patentee. A prerequisite for patent protection is that the innovation has a potential

commercial value. Purely scientific innovations are not patentable. It is also required

that the patented innovation is new. In addition, the innovation has to be non-trivial

and differ substantially from existing technology. All patent applications are public

documents independently of whether the patent is granted or not.

Before a patent is granted, the patent office performs a search in existing

patent documents in order to check that the idea to be patented is genuinely new.

During this search period, patent citations (and citations to scientific literature) are

added to the patent documents. Patent citations indicate relevant patented knowledge

and they have the legal purpose to potentially limit the scope of patent protection.

During the consideration, the patent examiners also assign the patent to one

technology field according to the international patent classification system (IPC).

In most countries, patents are granted for a potential period of 20 years. The

period of patent protection is potential because the granted patent has to be renewed

annually. Annual renewal fees are positive, relatively low and progressive in the

duration of the patent.

When a patent is granted in one country, it is valid in this country only. If an

innovator wants his patent to be valid in more than one country, she has to apply for

patent protection in all relevant countries. In Europe, the European Patent Office

(EPO) has the authority to grant patents for all member countries or for a limited

number of countries if the applicant wants so.2

Patent renewal, the value of patents and patent citations

Patent data are known for their deficiencies as a measure of innovation (see e.g. the

survey by Griliches, 1990). In particular, simple patent counts neither take into

account differences in the quality of innovations, the fact that many patents do not

lead to commercial innovations nor the fact that the propensity to patent varies

between sectors. Also, use of patent data does not take into account the fact that

many patents are applied for for other reasons than appropriating the returns from

innovations.3 The benefit of patent data in research on technological change is the

                                               
2 All EU member states are members of EPO in addition to Switzerland, Cyprus, Liechtenstein and
Monaco. Norway is not a member of EPO.
3 See Levin et al. (1987) for a study of the efficiency of patents as a means to appropriate the returns
from innovation.



5

nature of the data. The very disaggregated level of information revealed in patent

documents makes patent data a potentially important source of information.

In order to discriminate between patents of different economic impact, Pakes

and Schankerman (1984) and Pakes (1986) analyse the survival of patents. The

hypothesis is that patents that are renewed for longer periods have a higher economic

value than patents that are renewed for short periods only. Later contributions are

Pakes and Simpson (1989), Lanjouw (1998), Scankerman (1998) and Lanjouw et al.

(1998). The typical finding in these studies is that the value distribution of patents is

highly skewed with a median far below the mean. The majority of patents have a low

value while a few are extremely valuable.

Patent citations have been used as an indicator of technology flows in a series

of studies. This is because patent citations indicate a link of relevance between the

cited and the citing patent. Jaffe and Trajtenberg (1998, p. 8) write that ‘the

appearance of a citation indicates that the cited patent is, in some sense, a

technological antecedent of the citing patent’. From a survey study, Jaffe, Fogarty

and Banks (1998) conclude that citations provide information about the generation of

future technological impacts of a given invention.

Other contributions have explicitly interpreted patent citations as spillovers

flowing from the cited to the citing patent. The flows of spillovers over geographical

distance (Jaffe et al., 1993, Sjøholm, 1996 and Maurseth and Verspagen, 1999),

across country and language borders (Jaffe and Trajtenberg, 1998 and Maurseth and

Verspagen, 1999), across sectors and technology fields and between different types

of institutions (Jaffe and Trajtenberg, 1996) have been analysed. Jaffe and

Trajtenberg analyse patent citations on a panel data set and study the time dimension

in addition to the cross-country dimension. The studies suggest that patent citations

are generated from a ‘gravity like’ process in which patent citations links are most

intensive between agents being ‘close’ to each other. In the time dimension, citations

links are most intense after a time lag of three to five years (Jaffe and Trajtenberg,

1996 and 1998).

Verspagen (1997) and Maurseth (2001) have investigated the impact of

patent citations in the observational unit citing other units. These studies suggest that

firms or regions that cite other firms or regions experience higher growth (in

productivity or per capita income).
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The above studies support the idea that patent citations indicate a positive

spillover effect from the cited to the citing patents. How is the opposite effect? What

is the impact of subsequent patent citations on a cited patent? Theory suggests that

the effect can run in both directions: Patent citations received may indicate that the

cited patent has an extra value above the average. Ceteris paribus, it seems likely

that technologically pathbreaking and valuable patents are cited more often than

other patents. On the other hand, patent citations might also indicate the well-known

creative destruction effect in research rivalry. When a patent occurs that renders an

existing patent obsolete, it seems likely that it will trigger a patent citation. Thus,

patent citations might both indicate an extra value of a cited patent and intense

competition towards the same patent. In empirical research, the second of these

effects has not been taken into account. Trajtenberg (1990) analysed the social value

of innovations on CT-scanners using hedonic price indexes. He concludes that

particularly valuable innovation in this specific technology field received more

patent citations than less valuable innovations. Patent citations can therefore be used

as an indicator of the social value of innovations. Because spillovers are harmful for

innovators it is not obvious that patent citations signal private value. Harhoff et al.

(1999) find that the number of citations received is positively correlated with

estimates of the private value of the cited patent in a sample of particularly valuable

patents. Lanjouw and Schankerman (1999) construct an index for the quality of

patents, and find that citations contribute positively to this index. Hall et al. (2000)

investigate the market value of a sample of firms as function of both R&D, raw

patent counts and patent counts weighted by patent citations. They find that patent

citations add positively (but in limited amounts) to the market value of firms in

addition to resources devoted to R&D and patent counts. Neither of these studies

takes into account the possibility that patent citations may indicate the negative

spillover effect mentioned above. To the best of my knowledge, there has been no

attempt at discriminating between the creative destruction effect and the

extraordinary economic value one assumes that patent citations signal in the

literature. It is the aim of this paper to add some insights on these ambiguous effects

of patent citations.

3. Patent renewal and the value of patents
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The models sketched in this section are versions of the ones presented in Pakes and

Schankerman (1986) and Pakes (1986). Consider an agent who holds a patent. In

order to keep the patent in force the agent has to pay the renewal fee, Ct.
4 If the fee is

paid, the agent earns the current return to patent protection, Rt. The return to patent

protection measures the value of keeping the patent in force. Therefore, it is not a

direct measure of the value of the patented innovation. Some innovations are not

patented, among other reasons, because patenting involves disclosure of underlying

ideas.5 Other innovations could have a high value independently of patenting. Even

so, it is reasonable to assume that the returns to patent protection are correlated with

the returns to the patented innovations.

The agent is assumed to evaluate the expectation of the integral of discounted

net returns, E�( Rô-Cô)e
-rôdô,  where r is the discount rate, over the statutory limit to

patent protection, T, and choose a life span for the patent, T*, in order to maximise

the present value of expected net returns. The agent may stop paying the renewal fee.

In this case the patent lapses forever and the return is equal to zero thereafter. To stop

paying the renewal fee is therefore an absorptive state. Alternatively, the agent may

continue to pay the renewal fee, in which case the patent holder earns the net rate of

return (Rt-Ct) (which may be positive or negative) and also the option to renew the

patent at later stages.

The case of certainty

To set ideas, assume that the agent knows the path of the rate of return, Rt, with

certainty. The agent’s decision problem is then to maximise the discounted value of

net returns by choosing the age at which to stop paying the renewal fee. Therefore,

the agent chooses a lifetime, T*, in order to solve the problem:

                                               
4 Here the renewal fees are assumed to be a function of the patent’s age, t. The renewal fee schedules
change from time to time, however, so an exact formulation would be to let the renewal fee depend on
the patent’s cohort as well. In the appendix, the Norwegian renewal fees are discussed and it is
demonstrated that an age-specific, cohort independent fee schedule is an acceptable empirical
approximation.
5 See e.g. Levin et al. (1987)
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In equation 1), V is the value of patent protection, given the optimal renewal

behaviour. A simple renewal rule is to choose to stop paying the renewal fee when

net return becomes negative, or if no such point of time exists, the maximum life

span, T.  A necessary condition for the implied life span to be optimal is that there

exists a T* for which (Rt-Ct)>0 for t<T* and  (Rt-Ct)<0 for t>T* in the

neighbourhood of T*. For this life span to be optimal it is sufficient that (Rt-Ct) is

non-increasing in t. If returns to patent protection decay by the annual rate ä, the

vector x constitutes explanatory variables and β their coefficient vector, the renewal

decision will be to renew patent i as long as:

In equation 2) Ri0 represents the initial return to patent protection for patent i. In this

case, therefore, the costs schedule for patent protection, the explanatory variables and

the survival length distribution are enough to draw inferences on the distribution of

the value of patents. Let g(Ri0; θθ) and G(Ri0; θθ) be the density and cumulative

distribution functions of initial returns of patents, where θθ represents a parameter

vector. Then the probability that patent i has dropped out by age t is given by:

Given a distribution, g, of initial returns, equation 3) provides a basis for studies of

patent duration. Qt is a function of age, so it also serves as the cumulated probability

function of patent duration, F(t). Its corresponding density function is f(t)=dF(t)/dt.

The implied survival function is given by S(t)=1-F(t), and the hazard function by

h(t)=f(t)/S(t). The survival function is the probability that a patent survives at least to

age t. The hazard function indicates the rate at which patents lapse at age t, given that

they have not lapsed before.

t
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The case of uncertainty

It is unrealistic to assume that the sequence of net returns of patent protection is

known to the patentee in advance. Before innovation, technological progress must be

characterised by genuine uncertainty.6 It is reasonable that the net returns from

patented innovations are uncertain even after the patent is applied for. A patentee

may be uncertain about future innovation that may render his own innovation

obsolete, the dynamics of future prices in the relevant markets, the future costs of

developing the innovation and about production costs for the final product. Thus,

even if the patentee may feel certain about the time path of the renewal fees, Ct, the

exact time path of Rt is hardly certain even when R0 is known. It is reasonable that a

patentee takes into account the uncertainty of future Rt in decisions on whether to

renew a patent. Without imposing more assumptions on the problem it is problematic

to draw clear conclusions. Uncertainty may go in either direction. At a point of time,

events may occur that change the returns to patent protection by a small amount both

in the positive and the negative direction. Also, new drastic innovations may occur

that destroy the value of the patent.

Take the second type of event first. This is the kind of creative destructive

innovation that drives the growth models of Aghion and Howitt (1992) and Klette

and Griliches (2000). Innovations, and in particular patents, are known to come as

events with a random time span between them. Often, the arrival of patents is

modelled as a Poisson process in which patents occur at a known arrival rate , ë.

Then the probability that no drastic innovation has occurred at age t is e-ët. If so, the

value of the patent at t is Rt. The probability that at least one drastic innovation has

occurred is 1- e-ët. In this case the value of the patent at t is 0. If the process of drastic

innovations is Poisson, its effects can be modelled as a proportional addition to the

decay rate of the value of patents.

Uncertainty is not only over arrival of drastic competing innovations.

Uncertainty may also be present over market conditions. In this case, the expected

change of the value of patents may be zero, but uncertainty might still have important

effects on the decision to renew the patent. The holder of the patent might want to

renew the patent even if the current rate of return is negative. Define the net rate of

                                               
6 Research is – by definition – characterised as search for something unknown. Therefore there is no
known probability function for all characteristics of what will be found. There might be a known
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return, Pt=Rt-Ct and consider the expected value of patent protection at any age, t, as

a function of Pt and age, V(Pt,t). The value of patent protection is then the expected

discounted integral of net return over the entire possible lifetime for the patent, i.e.

until the statutory limit, provided this number is positive:

( ) 
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The value of patent protection at age t can be formulated as the rate of net

return in the next instance plus the expected value of patent protection shortly

thereafter if this sum is positive:

Equation 5) is the Bellman equation of the optimal stopping problem that faces the

holder of the patent. The stopping problem implies, in opposition to the renewal rule

outlined above, that patents may be renewed even if their current net rate of return is

negative. The holder of the patent may want to renew the patent because rates of

return may turn positive on later stages. The problem described in equation 5) has

been analysed on a general basis in several contributions (see e.g. Pindyck, 1991,

Dixt, 1992 and 1993 and Dixit and Pindyck, 1994). For some stochastic processes of

P, the problem results in a threshold rule for renewal, P(t)*. Generally, this rule will

be to renew the patent as long as P>P(t)* and to let the patent lapse whenever

P<P(t)*. P*<0, so the threshold net return of patents (above which the patent will be

renewed) is negative. P* will also increase in time towards zero at t=T. This follows

from the fact that the option to renew the patent in later periods disappears at the end

of the statutory period. The existence of the threshold value is ensured when there is

positive persistence of uncertainty so that the cumulative probability distribution of

future net rates of return, P’, H(P’|P) shifts to the right when P increases.7 When this

                                                                                                                                      
probability function of the value of the results of research, but as described in section 2, this probability
function may not be very restrictive.
7 See Dixit and Pindyck (1994) and Dixit (1993).
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is the case, the probability that returns in future states are larger than any given

number is larger the higher are current returns.

When future returns are uncertain and obey the assumptions described, there

will exist a probability distribution function for lapse dates and therefore a density

function, a survival function and a hazard rate. The probability function (and the

implicit density, survival and hazard functions) will be conditional not only on initial

returns but also of the stochastic process generating subsequent returns (Pakes,

1986).

The case of patent renewal under uncertainty is analysed by Pakes (1986) and

Lanjouw (1998). Pakes and Simpson (1989) introduce ‘stochastical dominance’ as an

approach to studies of patent duration.  A class of patents, i, is said to stochastically

dominating another, j, when the empirical survival function S*(t) of group i is larger

than for group j, S*i(t)>S*j(t). When class i dominates j, the proportion of patents in

class i that have value greater than any number is larger than the corresponding

proportion of patents of class j. This approach will be used in the non-parametric

specification described in the next section. For the parametric specifications, I

concentrate on the myopic case corresponding to the case of certainty.

4. Empirical specification and the data used

Censoring and data characteristics

The renewal data are from Statistics Norway, collected from the Norwegian Patent

Office. They cover all patent applications in Norway during the period 1980-94 (in

total more than 23 000). These data include both patents applied for by Norwegians

and patents applied for in Norway by foreigners. The data include the patents’

publication numbers, the application dates, the dates the patents were granted and the

dates they lapsed (i.e. the dates at which the holder stopped paying the renewal fee).

The time span between date of application and date of lapse is used as the observed

span for uncensored observations. For censored observations, the time span between

date of application and the latest observed lapse date is used. The latest observed

lapse date is in 1992, so this shortens the period covered.

The data include the technology field of the patent according to its

classification by International Patent Class (IPC). IPC is a hierarchical eight-digit

classification system for technology fields of patents. IPC classes are defined

according to technology, not economic sectors. In principle, therefore, a patent in
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pharmaceuticals can be classified in the same IPC code as a patent in chemicals.

Verspagen et al. (1992) provide a concordance table between IPC and ISIC. Based

on this concordance table, each patent was assigned one industrial sector.8 The

industrial sectors were further classified into four different groups according to R&D

intensity (R&D as share of value added) and one common group for which R&D

intensity could not be constructed.9 The four groups are included as dummy variables

in the estimated equations.

The renewal fee scheme was collected from the Norwegian Patent Office.10

The renewal fees are increasing in age and the scheme changes from time to time.

These changes are minor in terms of real value, so I imposed a common renewal fee

for all cohorts based on the computed average of renewal fees in real 1980

Norwegian Kroner (NOK), as described in the appendix.11

The Norwegian patent data do not contain patent citations. The data on patent

citations are from the European Patent Office (EPO). The database covers all

European patents applied for in the period from 1979 to -96 and patent citations

between them. The European patent database include the patents’ publication

numbers, information on IPC, the application dates but not lapse dates. Norway is

not a member of EPO. Therefore, only Norwegian patents also applied for in EPO

member countries are covered by both databases. These are few observations. In total

737 patents were identifiable in both databases. Of these only 598 could be included

in the analysis since some were not granted before the latest observed lapse date.

There are two sorts of censoring in the data. The first type is for the survival

data. The data cover Norwegian patents applied for in the period from 1980 to -94.

Therefore, even the oldest patents do not reach the statutory limit to patent protection

(which is 20 years in Norway). Consequently, all patents in the data that did not lapse

are censored. The latest observed date of lapse in the data is in 1992. All patents that

                                               
8 The industrial classification system used is ISIC rev. 2.The concordance scheme is not perfect. Some
IPCs are assigned several ISIC sectors indicated by particular percentage shares. The patents were
assigned to the sector that received the highest percentage. When the percentage was equal to 50, the
first sector was chosen.
9 R&D data are from the OECD ANBERD database. Data on value added are taken from the OECD
STAN database. R&D intensity was averaged over the period studied and the 22 sectors were
aggregated into the four sectors according to R&D as share of value added. Two sectors could not be
assigned R&D intensities and these two are aggregated into a common subgroup.  These are building
and construction and utilities (sector 4000 and 5000, ISIC rev. 2) for which R&D is not reported in the
ANBERD database and other transport (sector 3840 except –41, -43 and –45) for which no production
in Norway is reported in the STAN database.
10 Patentstyret (1979, 1982, 1986, 1993).
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did not lapse before 1992 are consequently treated as censored. Without censoring,

estimation of the probability density function of drop outs from patent protection

would be to maximise the likelihood function

( ) ∏=
=

n

i
itfL

1
),(          θθ

Since the data are characterised by censoring, this has to be taken into account.

Patent  i is observed over the span [ci,min(ci+T*i, ci+T’)], where ci is the application

date and T’ the latest observed lapse date. Let di be a dichotomous variable where

di=0 denotes censoring and di=1 failure. The contribution to the likelihood for patent

i is therefore given by (in which the parameter vector is suppressed):

( )( ) ( )( )( )ii d
ii

d
iii TcSTcfL −++= 1'*      )10

The data on patent citations are also censored. The patent citations data cover

the period from 1979 to 1996. In principle, a patent can be cited any time after its

application, also after it lapses. Therefore, the number of citations any patent receives

will be a function of whatever rule the patent citations possess (and therefore their

relation to the value of patents) and in addition the time span from application to

1996. A patent that occurs late in the period observed (1980 to 1992) will on average

receive fewer citations than a patent that occurs early in the period, if their value (and

other characteristics) are equal. Jaffe et al. (1998) argue that the time profile of

patent citations is a double exponential. Without taking the time profile of the present

citations data into account, I have chosen to follow the approach in Trajtenberg

(1990) and weight the number of patent citations received by the linear time span

from application to 1996. Therefore, the explanatory variable included is based on

the number of citations received per day since application of the patent.12 In order to

better interpret the estimates, this number is multiplied by 1825 (the number of days

in a five years period). The resulting estimates therefore indicate the effect for

                                                                                                                                      
11 One 1980 USD corresponds to 4.95 1980 NOK.
12 Jaffe et al. argue that patent citations occur most frequently after a period of 2-4 years. For late-
occurring patents, therefore, the choice of the linear weighting scheme described above will
underestimate the impact of patent citations on patent duration.
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patents that receive one patent citation every fifth year (which is somewhat below the

average for cited patents).

For citations within the same technology field, the underlying hypothesis is

that these potentially trigger lapse. For these patent citations, therefore, I weight the

number of citations by the linear time span from application to the date of lapse (or

censoring). The explanatory variable for this kind of patent citations is specified as

the number of citations per day since application to the latest observed point of time

before lapse or censoring multiplied by 1825. For patents receiving citations within

the same technology field one such citation every fifth year is somewhat above the

average.13

The implicit hypothesis for the construction of the explanatory variables is

that all (both within and between technology classes) patent citations a patent

receives potentially indicate a high value. Potentially dangerous citations are

assumed to be within technology class citations. These are allowed to influence only

during the patents’ lifetime.

The 598 patents are not representative for the total sample of patents. Figure

1 shows the Kaplan-Meier survival estimate of the foreign patents (NOP=0), the

Norwegian patents that were not applied for in EPO (NOP=1) and the Norwegian

patents also identified in the EPO database (NOP=2). Analysis time is days from

application of the patents.

Insert figure 1 here

The figure reveals three notable characteristics of the data. The first is that for all the

three categories of patents, there is great variance of survival time and therefore of

the implicit value of the patents. Less than 50 per cent of the patents in any category

survived more than 4000 days (about 11 years). Secondly, there is a notable

difference in renewal behaviour between Norwegian patents and foreign patents in

                                               
13 An alternative specification would be to let inter-technology class citations enter the decay rate. The
effects of such citations will be characterised by lags (both forward and backward) and intra-class
citations in some technology classes will have different effects from citations within other classes.
Also, even if one interpretation is that patent citations within a certain technology class trigger sudden
death, another interpretation is that patents that receive such citations are subject to higher competition
and therefore have lower value than patents that do not, also at times when no citations occur.
Therefore, I decided not to use time-varying decay rates, but rather to let intra-class citations impact on
the conditional mean survival time.
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the data. At all ages, the foreign patents dominate the domestic ones. Thirdly, the

Norwegian patents also applied for in EPO dominate the other domestic patents.14

Figure 2 shows the frequency of patent citations. The figure shows that patent

citations have a very skew distribution. For the 598 patents used her, more than 85

per cent are never cited. Only one patent receives the maximum number of eight

citations.15

Figure 2

It is interesting to note that patent duration does not seem to vary with R&D

intensity. In figure 3, Kaplan-Meier estimates of survival are graphed according to

the five subgroups of R&D intensity. The out-lying survival curve is for the

subgroup for which R&D intensity could not be constructed. For the four other

subgroups, no significant differences are visible.

Figure 3

Non-parametric testing and graphical approaches.

A common approach in analysing survival data is to use the strictly empirical and

non-parametric Kaplan-Meier estimator. It does not depend on any restriction

imposed by the model and it takes into account censored observations (observations

that end because the observational period ends and not because the patent lapses).

Let hk be the number of spells completed (i.e. the number of patents that lapsed) at

age k. Let mk be the number of censored observations at age k (i.e. the number of

patents that are not observed for higher ages because the dataset is censored). Let nk

be the number of patents that neither lapsed nor were censored before age k. These

are therefore patents that lapse or are censored at later stages: nk=Ól� k(ml+hl).

Therefore, nk is the number of patents that are ‘at risk’ at age k. The corresponding

                                               
14 When survival was counted from date of grant instead of application, the difference between
Norwegian and foreign patent application disappeared. The difference between the two Norwegian
subgroups remained. This indicates that it takes longer for foreigners to get a patent application
granted.
15 The finding that patent citations are skew-distributed is very typical. See Jaffe et al. (1993),
Trajtenberg (1990) or Maurseth and Verspagen (1999).
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Kaplan-Meier estimator, or product limit estimator for the survivor function is then

given by:
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∏
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This estimator implies that the estimated probability of a spell being completed at

age tk is set equal to the observed relative frequency of completion at this age. The

Kaplan-Meier estimator can be used to compare survival performance among

different categories or groups of the data. Differences among groups of the data can

be tested using the so-called log-rank test developed by Kalbfleisch and Prentice (see

Kiefer, 1988 or StataCorp, 1999). Inferences on differences in value between groups

of patents will therefore be based on testing the significance of the difference

between their survival functions. Use of the Kaplan-Meier estimator can not take into

account continuous characteristics of the data, however.

Semi-parametric specification

In order to take into account continuous explanatory variables, some assumptions

have to be imposed on the model to be tested. For the purpose of this paper, the

empirical specification follows Pakes and Schankerman (1984 and 1986) and

Schankerman (1998) in which uncertainty is disregarded. The results should

therefore be interpreted as a reduced form formulation for the effects of the

covariates and the estimates of initial returns, the decay rate and the other parameters

as crude approximations. For survival data, a compromise between strict parametric

models and non-parametric testing is the so-called Cox model. The Cox model

presumes a constant baseline hazard that does not vary between individuals.

Explanatory variables are taken into account as influencing  the hazard rate directly.

The hazard function to be estimated is therefore:

( ) ( ) ( )βith xexpxth         7) 0i =
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xi are explanatory variables included and β is the coefficient vector.16 The relative

hazard between two observations is assumed to be independent of the baseline

hazard and estimation can be performed without any other functional restrictions. It

is a restriction though, that the baseline hazard is assumed to be equal for all

observations and proportional over time. For some probability functions of initial

returns, like the log-normal to be formulated below, the proportional hazard

assumption is not valid.

Parametric approaches

In the literature, three alternative specifications of f(⋅) have been explored: the

Pareto, the exponential-Weibull and the log-normal distributions. Pakes and

Schankerman (1984) find that the Pareto distribution fits an international dataset

better than the other two, while Pakes and Schankerman (1986) argue that the log-

normal distribution fits a newer, but essentially similar dataset somewhat better.

Schankerman (1998) obtains a similar result based on French data. In the Pareto case,

the density function of survival for patents will be exponential, in the exponential-

Weibull case, the density function becomes a Gompertz-like function, while in the

log-normal case, the density function is normal. I experimented with all the three

distributions and the log-normal out-performed the two others in two different ways:

Firstly, for neither the Pareto nor the exponential-Weibull distributions, the estimated

parameters were economically sensible (they implied that the renewal rate increased

with the renewal fees).17 Secondly, the fits of the model, both in terms of predictions

and in terms of the resulting likelihood, were better for the log-normal distribution

than for the two other distributions. The deduction of the density and survival

functions for the Pareto distribution and the exponential-Weibull distribution are

presented in the appendix.

If initial returns distribute log-normally, the log of initial returns, r0=ln(R0)

distributes normally, r0~N(µ, σ). In this case, an agent will renew a patent of age t as

long as log of initial returns is given by:

                                               
16 In equation 7), costs are excluded. The reason is that costs influence on the hazard function in a
restricted manner which has to be estimated.
17 These results are similar to those obtained by Schankerman (1998).
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The age of the patent, t, enters in two of the terms in equation 8), in lnCt and in ät.

An approximation is to treat lnCt as individual specific variables and solve directly

for t from ät. Therefore, survival time will be given by:

( )βµ
δ itC x+−= ln
1

        t)9 i

Therefore, t distributes approximately normally. Because of censoring and non-

linearity, it is difficult to estimate equation 9) directly. In order to obtain an estimate

for ä, I follow Schankerman and Pakes (1986) and Schankerman (1998). Their

procedure differed from the present paper since they did not include explanatory

variables at the micro-level. In stead, their approach was to estimate the survival

function based on the observed survival rates. To investigate the value distribution of

patents, the point of departure is the empirical Kaplan-Meier estimates of the survival

function, S*(t), i.e. the fraction of patents being renewed at least to age t. The

proportion of patents that survive until age t is given by:

( )tz-1(t)S      )10 Φ=∗

I impose a common decay rate on all patents and I therefore suppress the individual

explanatory variables in the following. In this case, the model can be written:
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Above, Ö denotes the cumulative normal distribution. The disturbance term ut is a

composite error term capturing errors in the renewal rule, w, and a binomial

sampling error, vt, with variance S*(t)(1-S*(t)/N, where N is the number of patents in

the sample. The weights are estimated following Amemiya (1981) as described in the

appendix, and equation 11) is estimated by weighted non-linear least squares.

With the estimate of ä, ä^ at hand, the density and survival functions of

survival time can be expressed as in equation 12) and 13):
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In equations 12) and 13) notation is as above and ö denotes the standard normal

density function.

5. Empirical results

Non-parametric results and testing

Graphs 4, 5 and 6 below present Kaplan-Meier graphs of survival of patents

conditional on categorical indicators of patent citations. Graph 4 is for cited patents

(CITED=1) and not cited patents (CITED=0). The graph seems to support the idea

that cited patents are renewed for longer periods than patents that are not cited. The

survival curve for cited patents is almost everywhere above the curve for not cited

patents. This effect seems to be small, however. This result mimics those of Hall et

al. (2000) who find clear, but only marginal evidence that patent citations increase

the market value of the firm to which the patent belongs.

Graphs 5 and 6 present corresponding results on citations within and between

technology classes. In order to discriminate between patent citations between and

within technology classes, an explorative method was used. The IPC class is an

hierarchical eight-digit code. Therefore, cut-offs between within and between IPC
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classes could in principle be constructed for differences in number up to the eighth

digit. It would also be possible to make use of the industrial classification and

analyse patent citations within and between industrial sectors. For the purpose of this

paper, within-technology citations were defined as citations between patents that

differed in the three last digits only. All other citations were defined as between-

technology citations. The cut-off at the three last digits was chosen because it

maximised the difference in the observed survival behaviour.18

Graph 5 presents survival estimates for the group of patents that receive inter-

technology class citations versus other patents. Graph 6 presents similar evidence for

patents that only receive intra-technology field citations.

Insert figures 4, 5 and 6 here

Figures 5 and 6 illustrate the main findings in this paper: The effect of patent

citations on patent duration is consistent with the dual role of technology spillovers

described in section 2. Patents that are cited across technology fields are renewed for

longer periods than patents that are not cited (INTERC=1 versus INTERC=0). Patent

citations in general seem to indicate that the cited patent is of particular technological

value and such citations therefore indirectly imply a higher economic value of the

cited patent. Looking at inter-technology class citations instead of all citations

markedly strengthens the evidence in favour of this interpretation.

Patent citations within technology classes have the opposite effect. Patents

that receive citations within the same technological class only are renewed for

shorter periods than other patents (INTRAP=1 versus INTRAP=0). This finding

supports the hypothesis that intra-technology field citations indicate rival

innovations.19

Table 1

                                               
18 Probably the optimal cut-off to discriminate between within- and between-technology class citations
will vary between patent classes. In future research I intend to work further on this question and
construct alternative cut-off criteria.
19 It has been objected to me that the survival curves differ only for some ages. It should be underlined
that the survival curves for subgroups and for the oldest ages are based on very few observations.
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Neither the log-rank nor the so-called Wilcoxon tests reject equality between

the survivor function graphed in figures 4 through 6. Test results are presented in

table 1. It should be underlined that these results are obtained on a small sample and

that the categorisation of the data suppresses details. The category of patents that

receives inter-technology class citations includes patents that receive only such

citations and patents that receive both types of citations. Furthermore, the patents

receive different amounts of the two categories of citations.

Semi-parametric Cox model

To take into account the continuous characteristics of the explanatory variables, it is

necessary to rely on (semi-) parametric methods. The simplest way to do this is to

use the semi-parametric Cox model.

In the regressions, the main explanatory variables included are INTRA and

CITES. INTRA denotes the number of intra-technology class patent citations per

fifth year during the patents’ lifetime as discussed above. CITES denotes the total

number of citations a patent receives every fifth year during the time span from date

of application to 1996, as discussed above. In addition to these variables, dummy

variables for the years of application (up to 1988) and for the four categories of R&D

intensity were included in the regressions.20

Given the limited number of citations in the sample, it is possible to explore

another characteristic of the data. Some patent citations are self-citations in the sense

that a patent receives citations by patents applied for either by the same inventor who

developed the original patent or by the same firm that applied for the original patent.

By searching through the entire sample of patent citations, 14 citations were

identified as self-citations. Technology spillovers are external effects from one

innovation to other innovators. As such, self-citations represent noise to the data. It is

not clear, however, that the effect of citations on the value of patented innovation

should differ according to whether they are self-citations or not. The creative

destruction effect of intra-technology class patents could be present even if the

innovator of a patent chooses to introduce a new vintage of a product. Similarly, the

                                               
20 It was also experimented with inclusion of other explanatory variables, like the number of patents
applied for within the specific sector or technology class during the whole period or the same year in
order to investigate possible effects of competition. Neither of these variables resulted in significant
coefficients. I also experimented with using sector-specific dummy variables, but no notable results
were obtained.
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extra value of a patent signalled by citations in general may be present even if it is

the original inventor who adds citations. To allow for differences in the nature

between self-citations and external citations, I report results both when self-citations

were included in the common citations variables and when they were treated

separately.

Table 2.

The results from the Cox regressions are reported in table 2. The coefficients

are reported with exponentiated coefficients. The reported estimates can therefore be

interpreted as the ratio of the hazards between patents that differ one unit in the

corresponding covariate.  For instance, the coefficient of INTRA is 6.59. Therefore, a

patent with one patent citation within the same technology class every fifth year

faces a hazard that is 6.59 times as high as a patent that receives no patent citations.

This implies a very high hazard rate in the case of intra-technology class citations.

The result is the opposite for citations in general. The general effect of patent

citations, when the ‘dangerous’ within-technology class citations are accounted for,

is very productive. A patent that receives one citation every fifth year has a hazard

rate that is only 16 per cent of that of patents that receive no citations. When self-

citations are taken into account, the effect of external patent citations is even

stronger. Self-citations do not significantly influence on the estimated hazard rates,

but the effect of the residual citations, external citations, is larger when self-citations

are excluded from the variables.

It is interesting to note that the hazard rate does not seem to be increasing

with R&D intensity in the sector to which the patents belong, although a systematic

analysis of this aspect is beyond the scope of this paper. The interested reader should

confer Schankerman (1998). The results do not reveal any clear time trend for

survival of patents. As compared to 1980 (the base year) all coefficients are negative,

but there is no trend in their changes from year to year.

The value distribution of patents and parametric estimation

Table 3 reports results from weighted non-linear estimation of equation 11. The

dependent variable is based on the Kaplan-Meier survival estimates, to take into

account that the data are censored. Neither cohort-specific nor sector-specific



23

differences are included in the regressions. This would have reduced the number of

observations dramatically.

Table 3

The results imply a very skew value distribution of patents. The time unit is days, so

the estimated parameter µ (5.45) is the log of mean daily rates of return in 1980

NOK. The coefficient of δ is the estimate of how fast patent value decays. The

implied yearly rate is 45 per cent. As compared to the result in Pakes and

Schankerman (1984 and 1986) and in particular in Schankerman (1998) this is very

high. Their estimates vary between 2 (one sector in Schankerman’s 1998 article) and

25 per cent. Two differences between the present study and their study should be

noted. Firstly, Pakes and Schankerman analysed samples covering the period from

1950 to 1980. The period studied here is from 1980 to 1992. Secondly, Pakes and

Schankerman excluded the first five years from their study. In this paper, the whole

period from application onwards is included. The estimated standard deviation is

very similar to those obtained by Pakes and Schankerman (1986).

Table 4

Table 4 reports the implicit distribution of the initial value of patents by

quartile. The table is constructed by drawing 50 000 observations from a pseudo-

random normal distribution with the estimated initial mean rates of return and the

standard deviation imposed. The resulting numbers are thereafter exponentiated in

order to obtain the log-normal distribution. Then the resulting numbers are converted

to yearly rates of return. The table confirms the typical finding from studies of the

distribution of the value of patents. The mean exceeds the median by a large amount.

Less than ten per cent of the patents have initial yearly rates of return in excess of 1

million 1980 NOK.

In order to investigate the impact of patent citations on both renewal

behaviour and the value of initial returns, a log-likelihood function based on the

density and survival functions presented in equations 11 and 12 above was

constructed. The inverse of the estimate of δ was imposed on the log of the renewal
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fee schedule and constrained estimation was conducted. The results, both with and

without self-citations accounted for, are reported in table 5.

Table 5.

The table confirms the very strong impact of patent citations reported in table

2. In contrast to that table, the coefficients in table 5 can be interpreted directly as the

impact of a unit’s change in the explanatory variable on the expected survival time

for patents. One external patent citation every fifth year has an estimated impact of

increasing the survival period by more than three years (1336 days). One intra-

technology class patent citation from another agent each fifth year decreases the

survival period by more than three years (1360 days). The effects of patent citations

can be simulated and graphed against time. Figure 7 shows the implied survival

functions for patents that do not receive patent citations, for patents that receive one

citation every fifth year and for patents that receive one intra-technology class

citation every fifth year. Figure 7 also graphs the estimated Kaplan-Meier survival

function from the observed data.

Figure 7

There are three conclusions to be read out of the figure. Firstly, the model seems to

fit the data reasonably well. There is a lack of fit for the oldest patents, though this is

partly due to the omission of dummy variables for this specific regression.21

Secondly, the impact of patent citations as described above is very clear. Patents that

receive one intra-technology class citation every fifth year have markedly lower

survival rates than other patents. Patents that receive the same amount of the general

‘productive’ citations have higher survival rates. Thirdly, the effect of the discretely

changing renewal fee scheme is evident. The simulated survival curves have breaks

in them, corresponding to the increase in renewal fees every third year. The

                                               
21 The figure is constructed by rerunning the estimation without using dummy variables. On the basis
of the obtained estimates, the respective survival functions are simulated. The reason for excluding the
dummies is that inclusion imposes an arbitrary basis patent group for which the mean is reported. In
table 5, the basis group is patents applied for in 1980 belonging to the sectors for which no R&D
intensity could be constructed.
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simulated curves do not capture the fact that renewal of patents occurs yearly, as

visible in the stepwisely observed survival curves, however.

What are the conclusions from these estimates for the value of patents? The

way the regression model is formulated, patent citations are assumed to influence on

the conditional mean of the patents while the standard deviation and the decay rates

are assumed to be unaffected and common for all patents. Therefore, the influence of

patent citations on value is given as an addition of the estimated influence on days

multiplied by the estimated decay rate to the parameters in the log-normal

distribution. Patents in the basis group (i.e. patents applied for in 1980 and belonging

to the sectors for which R&D intensities could not be constructed) had initial mean

daily rates of return equal to NOK 4 357. Patents belonging to the same subgroup

with one ‘productive’ patent citation every fifth year had expected initial daily rates

of return equal to NOK 21 649. For a patent belonging to the same group receiving

one ‘dangerous’ patent citation every fifth year during its lifetime, expected initial

daily rates of return are reduced to NOK 852.22

The above calculations support the hypothesis put forth in this paper: Patent

citations in general do signal higher value of the cited patent. When the citing patent

is within the same technological ‘neighbourhood’ as the cited patent, the effect is the

opposite. In this case, patent citations seem to erode the private economic value of

the cited patent.

6. Conclusion and future research

It is well known that the value of innovation has a very skew distribution. This fact

implies that determinants of the value of innovation are important research issues. In

particular, the determinants of technological interaction are important. In previous

research, patent citations have been used as an indicator of above-normal value of

patents. The idea is that patents that receive many patent citations constitute major

scientific breakthroughs that are useful for later research and also indicate economic

extra value to the patentee. In this paper, this has been questioned. Generally, the

evidence supports the above hypothesis. This interpretation is strengthened when the

particular nature of citations within technological borders is accounted for. Such

                                               
22 For the log-normal distribution, the median and the mean are given by exp(µ) and exp(µ+1/2σ2). The
calculations above are based on the estimated coefficients, multiplied by the estimated daily decay rate
of 0.0012.
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citations indicate shorter survival of the cited patents. These findings are in

accordance with the interpretation of patent citations as knowledge spillovers.

Knowledge spillovers per se are external effects from innovations. As such they

reduce the (private) value of innovations. It is not arbitrary what patents which

produce knowledge spillovers, however. Spillover-producing patents are of higher

technological and economical value than other patents. When knowledge spills over

to rival innovators, they signal competition that drastically reduces the (private)

value of patents.

Research on patent citations is a new field. The present study will be

extended in future research. Firstly, the impact of patent citations should be analysed

on a more disaggregated level. The level of similarity in technological classes that

determines whether a patent citation should be interpreted as a rival patent or an

indicator of extra value should be analysed at industry level. Secondly, a full-fledged

analysis of patent survival could introduce time-varying variables indicating not only

the extent of, but also the time path of patent citations occurring. Thirdly, by

analysing the time span of drastic innovations, the possibility for analysing the length

of product cycles occurs. In order to take such advantages of patent citations, more

detailed data is required.
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Appendix 1. Density and survival functions for the Pareto and the exponential-

Weibull cases.

I derive the density and survival functions with the explanatory variables suppressed.

If initial returns are of the Pareto type the density function is given by:

)1(
00     A1) +−= ααα RR)f(R

In A1), the parameter α is given from the distribution function while the variable R is

the lower constraint for initial returns (parameterised to give a survival rate equal to 1

at age 0). S(t) then becomes equal to the conditional probability that R0≥z given that

R0>C0. In this case the survival function, i.e. the probability of a patent surviving at

least to age t, is given by:

( ) αδα −
= t

teCRtS )(     A2)

Disregarding as in the text the term C’(t), this gives the density function of patent age

and the associated hazard rate equal to

( ) αδαδα
−

= t
teCRtf )(     A3)

δα=)(     A4) th

In the Pareto case therefore, the hazard rate becomes constant and the survival

function can be estimated as exponential.

If initial returns are exponential-Weibull distributed, the density function is

given by:

ααααα
−−−−= RreRRARf 1

00 )(     A5)

In A5), the parameters α and R are the shape and scale parameters, respectively. A is

a scaling parameter set equal to exp(C0
αR-α). This is used to define S(t) so as it
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becomes equal to the conditional probability that a patent survives at least to t, given

that R0≥C0. Now, define Ct=KKt where K0=1. In this case the survival function is

given by:

( )1K-eS(t)     A6) −−
=

t
t eKR αδααα

This is similar to a Gompertz function for survival time and, when the term C’(t) is

ignored, the implied density and hazard rate functions become:

( )( )

t
t

eKR

eRKKth

Ktf
t

t

αδααα

αδααα

αδ

αδ
αδααα

−

−+

=

=
−

)(       A8)

 eRK)(       A7) 1-Kt-
t

Appendix 2. Weights used in non-linear least squares

The non-linear regression model presented in equation 11) has the composite error

term ut. This term consists of errors from the renewal rule, w, assumed to have zero

mean and constant variance and the binomial sampling error vt which is

heteroscedastic. The true dependent variable is yt=Φ-1(1-St) but I only observe the

empirical Kaplan-Meier estimate S*t=St+ vt. Following Amemiya (1981), I substitute

this into yt and approximate around S*t to get:
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We have Evt=0 and
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Therefore, equation 11) is a non-linear regression model with a heteroscedastic error

term. In order to construct the appropriate weights, I follow the procedure described

in Schankerman (1998). I first estimate the model by unweighted least squares. This

gives estimates of ut. Together with vt this allows me to construct w and w2 which are

used to construct σ2
u serving as weights in the non-linear least squares regression.

Appendix 3. Data construction and renewal costs

The data on renewal fees are from Patentstyret (1979, 1982, 1986 and 1993). The

Norwegian renewal costs change from time to time, but in such a way that real costs

for patents of a certain age are almost constant. The fees are increasing stepwisely in

age. After 1983, fees are constant for periods of three years. Figure A1 graphs the

Norwegian renewal fees in real 1980 NOK.

Figure A1

Source: Patentstyret (various years).

In the figure, I have included the 1993-renewal fee scheme in order to demonstrate

that expectations of a constant real fee scheme are in some sense ‘rational’. To
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simplify analysis, the average of the three relevant renewal fee schemes (1979, 1982

and 1986) was calculated, converted to daily rates and used in the analysis. A simple

regression of the stepwise log of daily costs on age (in terms of days) gave a constant

equal to –0.6 and the coefficient 0.00054 for days (R2=0.85).
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Figure 1.

Note: NOP=0 is for patents applied for in Norway by foreigners
NOP=1 is for patents applied for in Norway by Norwegians and not identifiable in the EPO
database.
NOP=2 is for patents applied for in Norway and identifiable in the EPO database.

Figure 2. Histogram of patent citations
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Figure 3.

Note: TECH=0 is for a composite group that could not be associated with R&D intensity.
TECH=1,2,3 and 4 are for groups with increasing R&D intensities.

Figure 4.

Kaplan-Meier survival estimates, by TECH
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Figure 5

Figure 6

Kaplan-Meier survival estimates, by INTERC
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Table 1. Tests for equality of survival functions (significance of chi2 test)

Log rank Wilcoxon
Cited versus not cited 0.57 0.71
Intra-IPC cites versus no cites 0.41 0.38
Inter-IPC cites versus other patents 0.13 0.21

Note: The difference between the log rank test and the Wilcoxon test is that the Wilcoxon test statistic
weights the difference between observed and expected number of failures (to pay renewal fee) by the
total number of observations at risk. This is appropriate when the hazard functions vary non-
proportionally.

Table 2. Cox model for survival of patents, estimated proportional hazard rates
(p-values in parentheses)

N=598
Failures: 163 Common model.

Accounting for self-
citations.

Log likelihood -862.47 -861.05
CITES 0.17 (0.000) 0.12 (0.000)
INTRA 6.59 (0.000) 8.06 (0.000)
Self-citations - 1.23 (0.820)
INTRA self citations - 1.15 (0.906)
High-tech 1.41 (0.493) 1.42 (0.473)
High-medium tech 1.50 (0.392) 1.50 (0.385)
Low-medium tech 1.75 (0.235) 1.76 (0.231)
Low 1.73 (0.300) 1.72 (0.309)
1981 1.07 (0.821) 1.06 (0.838)
1982 1.30 (0.404) 1.30 (0.405)
1983 0.82 (0.557) 0.83 (0.566)
1984 1.95 (0.026) 1.97 (0.024)
1985 1.09 (0.817) 1.05 (0.885)
1986 1.89 (0.062) 1.91 (0.057)
1987 1.02 (0.961) 0.97 (0.947)
1988 0.65 (0.581) 0.66 (0.584)
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Table 3. Regression results – value distribution of patents (p-values in
paranthesis)

Lognormal
distribution

N=563
adj. R2=0.90

ì 5.45 (0.000)
ä 0.0012 (0.000)
ó 1.79 (0.000)

Note: Log-normal distribution estimated by weighted non-linear squares. The number of observations
for the log-normal distribution is less than the number of observations because the survival function
was equal to one for 38 observations.

Table 4. Implied quantiles for log-normal value distribution, 1980 NOK, (yearly
return at age 0)

Quantile Return
0.25 25 985
0.50 86 496
0.75 290 407
0.95 1 601 427
Mean 438 374

Note: The table is constructed by making 50 000 pseudo-random draws from a normal distribution with
parameters taken from table 3, exponentiating the resulting numbers (in order to obtain a log-normal
distribution) and multiplying them with 365 (in order to obtain yearly rates of return). See footnote 21.
The resulting deviations from the exact distribution are the result of pseudo-random draws.
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Table 5.  Estimation of survival of patents, log-normal distribution of value (p-
values in parentheses)

N=598
Failures: 163 Common model

Accounting for self-
citations

Log likelihood -2665.0 -2664.0
CITES 1154 (0.002) 1336 (0.001)
INTRA -1251 (0.001) -1360 (0.000)
Self-citations - -438 (0.670)
INTRA self citations - 169 (0.895)
High-tech -406 (0.473) -394 (0.485)
High-medium tech -443 (0.411) -445 (0.409)
Low-medium tech -623 (0.246) -623 (0.244)
Low -581 (0.344) -565 (0.362)
1981 -384 (0.299) -365 (0.322)
1982 -778 (0.044) -786 (0.041)
1983 -248 (0.516) -252 (0.507)
1984 -1150 (0.001) -1165 (0.001)
1985 -557 (0.136) -510 (0.173)
1986 -1190 (0.001) -1206 (0.001)
1987 -673 (0.131) -642 (0.152)
1988 -58 (0.918) -63 (0.911)
Constant 5515 (0.000) 5504 (0.000)
Sigma 1575 (0.000) 1570 (0.000)

Figure 7.
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